Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.824
Filtrar
1.
J Refract Surg ; 40(5): e279-e290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717084

RESUMO

PURPOSE: To review the atypical development of Salzmann's nodular degeneration (SND) after two cases of laser in situ keratomileusis (LASIK) and one case of photorefractive keratomileusis (PRK), and to highlight the pathophysiology of SND and its treatment. METHODS: Three cases of SND (two following LASIK performed with microkeratomes and one following PRK) were reviewed and Pubmed.gov and internet searches were performed. RESULTS: SND is myofibroblast-generated fibrosis in the subepithelial space between the epithelium and Bowman's layer that develops years or decades after traumatic, surgical, infectious, or inflammatory injuries to the cornea in which the epithelial basement membrane is damaged in one or more locations and does not fully regenerate. It is hypothesized based on these cases, and the previous immunohistochemistry of other investigators, that myofibroblast precursors, such as fibrocytes or corneal fibroblasts, that enter the subepithelial space are driven to develop into myofibroblasts, which slowly proliferate and extend the fibrosis, by transforming growth factor-beta from epithelium and tears that passes through the defective epithelial basement membrane. These myofibroblasts and the disordered collagens, and other extracellular matrix components they produce, make up the subepithelial opacity characteristic of SND. Nodules are larger accumulations of myofibroblasts and disordered extracellular matrix. If the injury is associated with damage to the underlying Bowman's layer and stroma, as in LASIK flap generation, then the myofibroblasts and fibrosis can extend into Bowman's layer and the underlying anterior stroma. CONCLUSIONS: SND fibrosis often extends into Bowman's layer and the anterior stroma if there are associated Bowman's defects, such as incisions or lacerations. In the latter cases, SND frequently cannot be removed by simple scrape and peel, as typically performed for most common SND cases, but can be trimmed to remove the offending tissue. This condition is more accurately termed Salzmann's subepithelial fibrosis. [J Refract Surg. 2024;40(5):e279-e290.].


Assuntos
Epitélio Corneano , Fibrose , Ceratomileuse Assistida por Excimer Laser In Situ , Ceratectomia Fotorrefrativa , Humanos , Epitélio Corneano/patologia , Masculino , Lâmina Limitante Anterior/patologia , Adulto , Miopia/cirurgia , Miopia/fisiopatologia , Feminino , Doenças da Córnea/etiologia , Doenças da Córnea/cirurgia , Lasers de Excimer/uso terapêutico , Miofibroblastos/patologia , Pessoa de Meia-Idade
2.
Sci Rep ; 14(1): 9976, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693148

RESUMO

Inflammation and fibrosis often occur in the kidney after acute injury, resulting in chronic kidney disease and consequent renal failure. Recent studies have indicated that lymphangiogenesis can drive renal inflammation and fibrosis in injured kidneys. However, whether and how this pathogenesis affects the contralateral kidney remain largely unknown. In our study, we uncovered a mechanism by which the contralateral kidney responded to injury. We found that the activation of mineralocorticoid receptors and the increase in vascular endothelial growth factor C in the contralateral kidney after unilateral ureteral obstruction could promote lymphangiogenesis. Furthermore, mineralocorticoid receptor activation in lymphatic endothelial cells resulted in the secretion of myofibroblast markers, thereby contributing to renal fibrosis. We observed that this process could be attenuated by administering the mineralocorticoid receptor blocker eplerenone, which, prevented the development of fibrotic injury in the contralateral kidneys of rats with unilateral ureteral obstruction. These findings offer valuable insights into the intricate mechanisms underlying kidney injury and may have implications for the development of therapeutic strategies to mitigate renal fibrosis in the context of kidney disease.


Assuntos
Eplerenona , Fibrose , Rim , Linfangiogênese , Antagonistas de Receptores de Mineralocorticoides , Obstrução Ureteral , Animais , Eplerenona/farmacologia , Linfangiogênese/efeitos dos fármacos , Ratos , Fibrose/tratamento farmacológico , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/complicações , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Masculino , Receptores de Mineralocorticoides/metabolismo , Espironolactona/análogos & derivados , Espironolactona/farmacologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ratos Sprague-Dawley , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia
3.
Investig Clin Urol ; 65(3): 263-278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714517

RESUMO

PURPOSE: Myofibroblastic cancer-associated fibroblasts (myCAFs) are important components of the tumor microenvironment closely associated with tumor stromal remodeling and immunosuppression. This study aimed to explore myCAFs marker gene biomarkers for clinical diagnosis and therapy for patients with bladder cancer (BC). MATERIALS AND METHODS: BC single-cell RNA sequencing (scRNA-seq) data were obtained from the National Center for Biotechnology Information Sequence Read Archive. Transcriptome and clinical data were downloaded from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Subsequently, univariate Cox and LASSO (Least Absolute Shrinkage and Selection Operator regression) regression analyses were performed to construct a prognostic signature. Immune cell activity was estimated using single-sample gene set enrichment analysis whilst the TIDE (tumor immune dysfunction and exclusion) method was employed to assess patient response to immunotherapy. The chemotherapy response of patients with BC was evaluated using genomics of drug sensitivity in cancer. Furthermore, Immunohistochemistry was used to verify the correlation between MAP1B expression and immunotherapy efficacy. The scRNA-seq data were analyzed to identify myCAFs marker genes. RESULTS: Combined with bulk RNA-sequencing data, we constructed a two-gene (COL6A1 and MAP1B) risk signature. In patients with BC, the signature demonstrated outstanding prognostic value, immune infiltration, and immunotherapy response. This signature served as a crucial guide for the selection of anti-tumor chemotherapy medications. Additionally, immunohistochemistry confirmed that MAP1B expression was significantly correlated with immunotherapy efficacy. CONCLUSIONS: Our findings revealed a typical prognostic signature based on myCAF marker genes, which offers patients with BC a novel treatment target alongside theoretical justification.


Assuntos
Biomarcadores Tumorais , Fibroblastos Associados a Câncer , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Prognóstico , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Masculino , Feminino , Transcriptoma , Resultado do Tratamento , Miofibroblastos
4.
Sci Rep ; 14(1): 10365, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710778

RESUMO

Cardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca2+ permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear. In this work we adopted a multimodal approach, combining the local mechanical stimulation (from 10 pN to 350 nN) with variations of culture substrate stiffness. We found that primary rat CFs cultured on stiff (GPa) substrates showed a broad Piezo1 distribution in the cell with particular accumulation at the mitochondria membrane. CFs displayed a force-dependent behavior in both calcium uptake and channel activation probability, showing a threshold at 300 nN, which involves both cytosolic and mitochondrial Ca2+ mobilization. This trend decreases as the myofibroblast phenotype within the cell population increases, following a possible Piezo1 accumulation at focal adhesion sites. In contrast, the inhibition of fibroblasts to myofibroblasts transition with soft substrates (kPa) considerably reduces both mechanically- and chemically-induced Piezo1 activation and expression. Our findings shed light on how Piezo1 function and expression are regulated by the substrate stiffness and highlight its involvement in the environment-mediated modulation of CFs mechanosensitivity.


Assuntos
Fibroblastos , Canais Iônicos , Mecanotransdução Celular , Proteínas de Membrana , Animais , Canais Iônicos/metabolismo , Ratos , Fibroblastos/metabolismo , Fibroblastos/citologia , Células Cultivadas , Cálcio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia , Miocárdio/metabolismo , Miocárdio/citologia , Microambiente Celular
5.
Commun Biol ; 7(1): 544, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714800

RESUMO

Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-ß. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-ß treated ECs, which upregulates C/EBPß and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPß with ACTA2 promoter by stabilizing the C/EBPß protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-ß and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Fibrose , Midkina , Midkina/metabolismo , Midkina/genética , Animais , Camundongos , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Transição Epitelial-Mesenquimal , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Rim/metabolismo , Rim/patologia , Camundongos Knockout , Transição Endotélio-Mesênquima
6.
Front Immunol ; 15: 1374931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562930

RESUMO

Background: Clear cell renal cell carcinomas (ccRCCs) epitomize the most formidable clinical subtype among renal neoplasms. While the impact of tumor-associated fibroblasts on ccRCC progression is duly acknowledged, a paucity of literature exists elucidating the intricate mechanisms and signaling pathways operative at the individual cellular level. Methods: Employing single-cell transcriptomic analysis, we meticulously curated UMAP profiles spanning substantial ccRCC populations, delving into the composition and intrinsic signaling pathways of these cohorts. Additionally, Myofibroblasts were fastidiously categorized into discrete subpopulations, with a thorough elucidation of the temporal trajectory relationships between these subpopulations. We further probed the cellular interaction pathways connecting pivotal subpopulations with tumors. Our endeavor also encompassed the identification of prognostic genes associated with these subpopulations through Bulk RNA-seq, subsequently validated through empirical experimentation. Results: A notable escalation in the nFeature and nCount of Myofibroblasts and EPCs within ccRCCs was observed, notably enriched in oxidation-related pathways. This phenomenon is postulated to be closely associated with the heightened metabolic activities of Myofibroblasts and EPCs. The Myofibroblasts subpopulation, denoted as C3 HMGA1+ Myofibroblasts, emerges as a pivotal subset, displaying low differentiation and positioning itself at the terminal point of the temporal trajectory. Intriguingly, these cells exhibit a high degree of interaction with tumor cells through the MPZ signaling pathway network, suggesting that Myofibroblasts may facilitate tumor progression via this pathway. Prognostic genes associated with C3 were identified, among which TUBB3 is implicated in potential resistance to tumor recurrence. Finally, experimental validation revealed that the knockout of the key gene within the MPZ pathway, MPZL1, can inhibit tumor activity, proliferation, invasion, and migration capabilities. Conclusion: This investigation delves into the intricate mechanisms and interaction pathways between Myofibroblasts and ccRCCs at the single-cell level. We propose that targeting MPZL1 and the oxidative phosphorylation pathway could serve as potential key targets for treating the progression and recurrence of ccRCC. This discovery paves the way for new directions in the treatment and prognosis diagnosis of ccRCC in the future.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Miofibroblastos/metabolismo , Recidiva Local de Neoplasia , Neoplasias Renais/patologia , Perfilação da Expressão Gênica , Fosfoproteínas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
7.
Curr Protoc ; 4(4): e1025, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600839

RESUMO

Cardiac fibroblasts (CF) are an essential cell type in cardiac physiology, playing diverse roles in maintaining structural integrity, extracellular matrix (ECM) synthesis, and tissue repair. Under normal conditions, these cells reside in the interstitium in a quiescent state poised to sense and respond to injury by synthesizing and secreting collagen, vimentin, hyaluronan, and other ECM components. In response to mechanical and chemical stimuli, these "resident" fibroblasts can undergo a transformation through a continuum of activation states into what is commonly known as a "myofibroblast," in a process critical for injury response. Despite progress in understanding the contribution of fibroblasts to cardiac health and disease, much remains unknown about the signaling mediating this activation, in part owing to technical challenges in evaluating CF function and activation status in vitro. Given their role in monitoring the ECM, CFs are acutely sensitive to stiffness and pressure. High basal activation of isolated CFs is common due to the super-physiologic stiffness of traditional cell culture substrates, making assays dependent on quiescent cells challenging. To overcome this problem, cell culture parameters must be tightly controlled, and the use of dishes coated with biocompatible reduced-stiffness substrates, such as 8-kPa polydimethylsiloxane (PDMS), has shown promise in reducing basal activation of fibroblasts. Here, we describe cell culture protocol for maintaining CF quiescence in vitro to enable a dynamic range for the assessment of activation status in response to fibrogenic stimuli using PDMS-coated coverslips. Our protocol provides a cost-effective tool to study fibroblast signaling and activity, allowing researchers to better understand the underlying mechanisms involved in cardiac fibrosis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of 8-kPa polydimethylsiloxane (PDMS)/gelatin-coated coverslips for cardiac fibroblast cell culture Basic Protocol 2: Isolation of adult cardiac fibroblasts and plating onto PDMS coverslips Basic Protocol 3: Assessment of cardiac fibroblast activation by α smooth muscle actin (αSMA) immunocytochemistry.


Assuntos
Fibroblastos , Coração , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Dimetilpolisiloxanos/metabolismo , Dimetilpolisiloxanos/farmacologia
8.
Methods Mol Biol ; 2782: 97-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622395

RESUMO

Simple and reproducible 3D cell culture systems that mimic biological interactions within physiological tissues (biomimetics) can provide unique insight for scientific inquiries compared to 2D cell cultures. Fibroblast-populated collagen lattices (FPCLs) are commonly used for mimicking physiological collagen matrices, potentiating biomechanical stresses on embedded fibroblasts. Here, we describe a novel 3D co-culture model that incorporates human Tenon's capsule fibroblasts embedded in FPCLs co-cultured with THP-1 monocytes suspended in culture media. This method can be used for the assessment of cell-cell interactions in various stages of the wound healing process and can facilitate various types of immune cells in co-culture. This system can also be used to study pharmacological agents that may eventually improve clinical outcomes in patients affected by inflammatory disorders.


Assuntos
Monócitos , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Técnicas de Cocultura , Monócitos/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo
9.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602485

RESUMO

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Assuntos
Diferenciação Celular , Via de Sinalização Hippo , Morfogênese , Miofibroblastos , Proteínas Serina-Treonina Quinases , Alvéolos Pulmonares , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Morfogênese/genética , Mesoderma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pulmão/metabolismo , Organogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
10.
Int J Biol Sci ; 20(6): 2310-2322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617540

RESUMO

Wnt/ß-catenin signaling plays a pivotal role in the pathogenesis of chronic kidney diseases (CKD), which is associated with macrophage activation and polarization. However, the relative contribution of macrophage-derived Wnts in the evolution of CKD is poorly understood. Here we demonstrate a critical role of Wnts secreted by macrophages in regulating renal inflammation and fibrosis after various injuries. In mouse model of kidney fibrosis induced by unilateral ureteral obstruction (UUO), macrophages were activated and polarized to M1 and M2 subtypes, which coincided with the activation of Wnt/ß-catenin signaling. In vitro, multiple Wnts were induced in primary cultured bone marrow-derived macrophages (BMDMs) after polarization. Conversely, Wnt proteins also stimulated the activation and polarization of BMDMs to M1 and M2 subtype. Blockade of Wnt secretion from macrophages in mice with myeloid-specific ablation of Wntless (Wls), a cargo receptor that is obligatory for Wnt trafficking and secretion, blunted macrophage infiltration and activation and inhibited the expression of inflammatory cytokines. Inhibition of Wnt secretion by macrophages also abolished ß-catenin activation in tubular epithelium, repressed myofibroblast activation and reduced kidney fibrosis after either obstructive or ischemic injury. Furthermore, conditioned medium from Wls-deficient BMDMs exhibited less potency to stimulate fibroblast proliferation and activation, compared to the controls. These results underscore an indispensable role of macrophage-derived Wnts in promoting renal inflammation, fibroblasts activation and kidney fibrosis.


Assuntos
Insuficiência Renal Crônica , beta Catenina , Animais , Camundongos , Macrófagos , Miofibroblastos , Inflamação , Rim
11.
Sci Rep ; 14(1): 8725, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622256

RESUMO

Keloids are characterized by abnormal wound healing with excessive accumulation of extracellular matrix. Myofibroblasts are the primary contributor to extracellular matrix secretion, playing an essential role in the wound healing process. However, the differences between myofibroblasts involved in keloid formation and normal wound healing remain unclear. To identify the specific characteristics of keloid myofibroblasts, we initially assessed the expression levels of well-established myofibroblast markers, α-smooth muscle actin (α-SMA) and transgelin (TAGLN), in scar and keloid tissues (n = 63 and 51, respectively). Although myofibroblasts were present in significant quantities in keloids and immature scars, they were absent in mature scars. Next, we conducted RNA sequencing using myofibroblast-rich areas from keloids and immature scars to investigate the difference in RNA expression profiles among myofibroblasts. Among significantly upregulated 112 genes, KN motif and ankyrin repeat domains 4 (KANK4) was identified as a specifically upregulated gene in keloids. Immunohistochemical analysis showed that KANK4 protein was expressed in myofibroblasts in keloid tissues; however, it was not expressed in any myofibroblasts in immature scar tissues. Overexpression of KANK4 enhanced cell mobility in keloid myofibroblasts. Our results suggest that the KANK4-mediated increase in myofibroblast mobility contributes to keloid pathogenesis.


Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Queloide/metabolismo , Miofibroblastos/metabolismo , Cicatriz Hipertrófica/metabolismo , Fibroblastos/metabolismo , Cicatrização/genética
12.
Ren Fail ; 46(1): 2334406, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38575341

RESUMO

A critical event in the pathogenesis of kidney fibrosis is the transition of macrophages into myofibroblasts (MMT). Exosomes play an important role in crosstalk among cells in the kidney and the development of renal fibrosis. However, the role of myofibroblast-derived exosomes in the process of MMT and renal fibrosis progression remains unknown. Here, we examined the role of myofibroblast-derived exosomes in MMT and kidney fibrogenesis. In vitro, transforming growth factor-ß1 stimulated the differentiation of kidney fibroblasts into myofibroblasts and promoted exosome release from myofibroblasts. RAW264.7 cells were treated with exosomes derived from myofibroblasts. We found purified exosomes from myofibroblasts trigger the MMT. By contrast, inhibition of exosome production with GW4869 or exosome depletion from the conditioned media abolished the ability of myofibroblasts to induce MMT. Mice treatment with myofibroblast-derived exosomes (Myo-Exo) exhibited severe fibrotic lesion and more abundant MMT cells in kidneys with folic acid (FA) injury, which was negated by TANK-banding kinase-1 inhibitor. Furthermore, suppression of exosome production reduced collagen deposition, extracellular matrix protein accumulation, and MMT in FA nephropathy. Collectively, Myo-Exo enhances the MMT and kidney fibrosis. Blockade of exosomes mediated myofibroblasts-macrophages communication may provide a novel therapeutic target for kidney fibrosis.


Assuntos
Exossomos , Nefropatias , Animais , Camundongos , Miofibroblastos/metabolismo , Exossomos/metabolismo , Exossomos/patologia , Macrófagos/metabolismo , Nefropatias/patologia , Rim/patologia , Fibrose
13.
J Cancer Res Ther ; 20(2): 706-711, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687943

RESUMO

BACKGROUND: Oral submucous fibrosis (OSF) is a precancerous lesion, with oral squamous cell carcinoma (OSCC) being the most prevalent malignancy affecting the oral mucosa. The malignant transformation of OSF into OSCC is estimated to occur in 7-13% of cases. Myofibroblasts (MFs) play pivotal roles in both physiological and pathological processes, such as wound healing and tumorigenesis, respectively. This study aimed to explore the involvement of MFs in the progression of OSF and its malignant transformation. MATERIALS AND METHODS: In total, 94 formalin-fixed paraffin-embedded tissue blocks were collected, including normal oral mucosa (NOM; n = 10), early-moderate OSF (EMOSF; n = 29), advanced OSF (AOSF; n = 29), paracancerous OSF (POSF; n = 21), and OSCC (n = 5) samples. Alpha-smooth muscle actin was used for the immunohistochemical identification of MFs. RESULTS: NOM exhibited infrequent expression of MFs. A higher staining index of MFs was found in AOSF, followed by EMOSF and NOM. Additionally, a significant increase in the staining index of MFs was found from EMOSF to POSF and OSCC. The staining index of MFs in NOM, EMOSF, AOSF, POSF, and OSCC was 0.14 ± 0.2, 1.69 ± 1.4, 2.47 ± 1.2, 3.57 ± 2.6, and 8.86 ± 1.4, respectively. All results were statistically significant (P < 0.05). CONCLUSIONS: The expression of MFs exhibited a gradual increase as the disease progressed from mild to malignant transformation, indicating the contributory role of MFs in the fibrogenesis and potential tumorigenesis associated with OSF.


Assuntos
Transformação Celular Neoplásica , Imuno-Histoquímica , Neoplasias Bucais , Miofibroblastos , Fibrose Oral Submucosa , Humanos , Fibrose Oral Submucosa/patologia , Fibrose Oral Submucosa/metabolismo , Miofibroblastos/patologia , Miofibroblastos/metabolismo , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Masculino , Feminino , Mucosa Bucal/patologia , Mucosa Bucal/metabolismo , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/metabolismo , Pessoa de Meia-Idade , Adulto , Actinas/metabolismo , Progressão da Doença
14.
Signal Transduct Target Ther ; 9(1): 94, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644381

RESUMO

Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.


Assuntos
Fibrose , Proteínas de Homeodomínio , Miocárdio , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos Knockout , Miocárdio/patologia , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia
15.
Exp Eye Res ; 242: 109884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570181

RESUMO

Recent studies in rabbits and case reports in humans have demonstrated the efficacy of topical losartan in the treatment of corneal scarring fibrosis after a wide range of injuries, including chemical burns, infections, surgical complications, and some diseases. It is hypothesized that the effect of losartan on the fibrotic corneal stroma occurs through a two-phase process in which losartan first triggers the elimination of myofibroblasts by directing their apoptosis via inhibition of extracellular signal-regulated kinase (ERK)-mediated signal transduction, and possibly through signaling effects on the viability and development of corneal fibroblast and fibrocyte myofibroblast precursor cells. This first step likely occurs within a week or two in most corneas with fibrosis treated with topical losartan, but the medication must be continued for much longer until the epithelial basement membrane (EBM) is fully regenerated or new myofibroblasts will develop from precursor cells. Once the myofibroblasts are eliminated from the fibrotic stroma, corneal fibroblasts can migrate into the fibrotic tissue and reabsorb/reorganize the disordered extracellular matrix (ECM) previously produced by the myofibroblasts. This second stage is longer and more variable in different eyes of rabbits and humans, and accounts for most of the variability in the time it takes for the stromal opacity to be markedly reduced by topical losartan treatment. Eventually, keratocytes reemerge in the previously fibrotic stromal tissue to fine-tune the collagens and other ECM components and maintain the normal structure of the corneal stroma. The efficacy of losartan in the prevention and treatment of corneal fibrosis suggests that it acts as a surrogate for the EBM, by suppressing TGF beta-directed scarring of the wounded corneal stroma, until control over TGF beta action is re-established by a healed EBM, while also supporting regeneration of the EBM by allowing corneal fibroblasts to occupy the subepithelial stroma in the place of myofibroblasts.


Assuntos
Substância Própria , Fibrose , Losartan , Miofibroblastos , Losartan/uso terapêutico , Substância Própria/efeitos dos fármacos , Substância Própria/metabolismo , Substância Própria/patologia , Fibrose/tratamento farmacológico , Humanos , Animais , Miofibroblastos/patologia , Miofibroblastos/efeitos dos fármacos , Coelhos , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/patologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Administração Tópica
16.
Ecotoxicol Environ Saf ; 276: 116309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599156

RESUMO

Emerging evidence has suggested that exposure to PM2.5 is a significant contributing factor to the development of chronic obstructive pulmonary disease (COPD). However, the underlying biological effects and mechanisms of PM2.5 in COPD pathology remain elusive. In this study, we aimed to investigate the implication and regulatory effect of biomass fuels related-PM2.5 (BRPM2.5) concerning the pathological process of fibroblast-to-myofibroblast transition (FMT) in the context of COPD. In vivo experimentation revealed that exposure to biofuel smoke was associated with airway inflammation in rats. After 4 weeks of exposure, there was inflammation in the small airways, but no significant structural changes in the airway walls. However, after 24 weeks, airway remodeling occurred due to increased collagen deposition, myofibroblast proliferation, and tracheal wall thickness. In vitro, cellular immunofluorescence results showed that with stimulation of BRPM2.5 for 72 h, the cell morphology of fibroblasts changed significantly, most of the cells changed from spindle-shaped to star-shaped irregular, α-SMA stress fibers appeared in the cytoplasm and the synthesis of type I collagen increased. The collagen gel contraction experiment showed that the contractility of fibroblasts was enhanced. The expression level of TRPC1 in fibroblasts was increased. Specific siRNA-TRPC1 blocked BRPM2.5-induced FMT and reduced cell contractility. Additionally, specific siRNA-TRPC1 resulted in a decrease in the augment of intracellular Ca2+ concentration ([Ca2+]i) induced by BRPM2.5. Notably, it was found that the PI3K inhibitor, LY294002, inhibited enhancement of AKT phosphorylation level, FMT occurrence, and elevation of TRPC1 protein expression induced by BRPM2.5. The findings indicated that BRPM2.5 is capable of inducing the FMT, with the possibility of mediation by PI3K/AKT/TRPC1. These results hold potential implications for the understanding of the molecular mechanisms involved in BRPM2.5-induced COPD and may aid in the development of novel therapeutic strategies for pathological conditions characterized by fibrosis.


Assuntos
Fibroblastos , Pulmão , Miofibroblastos , Material Particulado , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Canais de Cátion TRPC , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/efeitos dos fármacos , Ratos , Miofibroblastos/efeitos dos fármacos , Material Particulado/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Canais de Cátion TRPC/metabolismo , Masculino , Biomassa , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/patologia
17.
World J Gastroenterol ; 30(15): 2143-2154, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38681990

RESUMO

BACKGROUND: Liver fibrosis is a compensatory response during the tissue repair process in chronic liver injury, and finally leads to liver cirrhosis or even hepatocellular carcinoma. The pathogenesis of hepatic fibrosis is associated with the progressive accumulation of activated hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts to produce an excess of the extracellular matrix (ECM). Myofibroblasts are the main source of the excessive ECM responsible for hepatic fibrosis. Therefore, activated hepatic stellate cells (aHSCs), the principal ECM producing cells in the injured liver, are a promising therapeutic target for the treatment of hepatic fibrosis. AIM: To explore the effect of taurine on aHSC proliferation and the mechanisms involved. METHODS: Human HSCs (LX-2) were randomly divided into five groups: Normal control group, platelet-derived growth factor-BB (PDGF-BB) (20 ng/mL) treated group, and low, medium, and high dosage of taurine (10 mmol/L, 50 mmol/L, and 100 mmol/L, respectively) with PDGF-BB (20 ng/mL) treated group. Cell Counting Kit-8 method was performed to evaluate the effect of taurine on the viability of aHSCs. Enzyme-linked immunosorbent assay was used to estimate the effect of taurine on the levels of reactive oxygen species (ROS), malondialdehyde, glutathione, and iron concentration. Transmission electron microscopy was applied to observe the effect of taurine on the autophagosomes and ferroptosis features in aHSCs. Quantitative real-time polymerase chain reaction and Western blot analysis were performed to detect the effect of taurine on the expression of α-SMA, Collagen I, Fibronectin 1, LC3B, ATG5, Beclin 1, PTGS2, SLC7A11, and p62. RESULTS: Taurine promoted the death of aHSCs and reduced the deposition of the ECM. Treatment with taurine could alleviate autophagy in HSCs to inhibit their activation, by decreasing autophagosome formation, downregulating LC3B and Beclin 1 protein expression, and upregulating p62 protein expression. Meanwhile, treatment with taurine triggered ferroptosis and ferritinophagy to eliminate aHSCs characterized by iron overload, lipid ROS accumulation, glutathione depletion, and lipid peroxidation. Furthermore, bioinformatics analysis demonstrated that taurine had a direct targeting effect on nuclear receptor coactivator 4, exhibiting the best average binding affinity of -20.99 kcal/mol. CONCLUSION: Taurine exerts therapeutic effects on liver fibrosis via mechanisms that involve inhibition of autophagy and trigger of ferroptosis and ferritinophagy in HSCs to eliminate aHSCs.


Assuntos
Autofagia , Proliferação de Células , Ferroptose , Células Estreladas do Fígado , Cirrose Hepática , Espécies Reativas de Oxigênio , Taurina , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Autofagia/efeitos dos fármacos , Taurina/farmacologia , Ferroptose/efeitos dos fármacos , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Becaplermina/farmacologia , Becaplermina/metabolismo , Linhagem Celular , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Cell Commun Signal ; 22(1): 247, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689280

RESUMO

BACKGROUND: Renal fibrosis is a prevalent manifestation of chronic kidney disease (CKD), and effective treatments for this disease are currently lacking. Myofibroblasts, which originate from interstitial fibroblasts, aggregate in the renal interstitium, leading to significant accumulation of extracellular matrix and impairment of renal function. The nonreceptor tyrosine kinase c-Abl (encoded by the Abl1 gene) has been implicated in the development of renal fibrosis. However, the precise role of c-Abl in this process and its involvement in fibroblast-myofibroblast transition (FMT) remain poorly understood. METHODS: To investigate the effect of c-Abl in FMT during renal fibrosis, we investigated the expression of c-Abl in fibrotic renal tissues of patients with CKD and mouse models. We studied the phenotypic changes in fibroblast or myofibroblast-specific c-Abl conditional knockout mice. We explored the potential targets of c-Abl in NRK-49F fibroblasts. RESULTS: In this study, fibrotic mouse and cell models demonstrated that c-Abl deficiency in fibroblasts mitigated fibrosis by suppressing fibroblast activation, fibroblast-myofibroblast transition, and extracellular matrix deposition. Mechanistically, c-Abl maintains the stability of the RACK1 protein, which serves as a scaffold for proteins such as c-Abl and focal adhesion kinase at focal adhesions, driving fibroblast activation and differentiation during renal fibrosis. Moreover, specifically targeting c-Abl deletion in renal myofibroblasts could prove beneficial in established kidney fibrosis by reducing RACK1 expression and diminishing the extent of fibrosis. CONCLUSIONS: Our findings suggest that c-Abl plays a pathogenic role in interstitial fibrosis through the regulation of RACK1 protein stabilization and myofibroblast differentiation, suggesting a promising strategy for the treatment of CKD.


Assuntos
Fibroblastos , Fibrose , Miofibroblastos , Proteínas Proto-Oncogênicas c-abl , Receptores de Quinase C Ativada , Transdução de Sinais , Animais , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Humanos , Camundongos , Fibroblastos/metabolismo , Fibroblastos/patologia , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Rim/patologia , Rim/metabolismo , Masculino , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL
19.
Ren Fail ; 46(1): 2327498, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38666363

RESUMO

Iguratimod is a novel synthetic, small-molecule immunosuppressive agent used to treat rheumatoid arthritis. Through ongoing exploration of its role and mechanisms of action, iguratimod has been observed to have antifibrotic effects in the lung and skin; however, its effect on renal fibrosis remains unknown. This study aimed to investigate whether iguratimod could affect renal fibrosis progression. Three different concentrations of iguratimod (30 mg/kg/day, 10 mg/kg/day, and 3 mg/kg/day) were used to intervene in unilateral ureteral obstruction (UUO) model mice. Iguratimod at 10 mg/kg/day was observed to be effective in slowing UUO-mediated renal fibrosis. In addition, stimulating bone marrow-derived macrophages with IL-4 and/or iguratimod, or with TGF-ß and iguratimod or SRC inhibitors in vitro, suggested that iguratimod mitigates the progression of renal fibrosis in UUO mice, at least in part, by inhibiting the IL-4/STAT6 signaling pathway to attenuate renal M2 macrophage infiltration, as well as by impeding SRC activation to reduce macrophage-myofibroblast transition. These findings reveal the potential of iguratimod as a treatment for renal disease.


Assuntos
Modelos Animais de Doenças , Fibrose , Interleucina-4 , Macrófagos , Fator de Transcrição STAT6 , Sulfonamidas , Obstrução Ureteral , Animais , Obstrução Ureteral/complicações , Camundongos , Macrófagos/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Interleucina-4/metabolismo , Fator de Transcrição STAT6/metabolismo , Masculino , Miofibroblastos/efeitos dos fármacos , Cromonas/farmacologia , Cromonas/uso terapêutico , Rim/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Nefropatias/etiologia , Nefropatias/prevenção & controle , Nefropatias/patologia , Nefropatias/tratamento farmacológico , Camundongos Endogâmicos C57BL , Imunossupressores/farmacologia
20.
Mol Biol Cell ; 35(6): ar75, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598298

RESUMO

To cause vision-disrupting fibrotic secondary cataract (PCO), lens epithelial cells that survive cataract surgery must migrate to the posterior of the lens capsule and differentiate into myofibroblasts. During this process, the cells become exposed to the FGF that diffuses out of the vitreous body. In normal development, such relatively high levels of FGF induce lens epithelial cells to differentiate into lens fiber cells. It has been a mystery as to how lens cells could instead undergo a mutually exclusive cell fate, namely epithelial to myofibroblast transition, in the FGF-rich environment of the posterior capsule. We and others have reported that the ability of TGFß to induce lens cell fibrosis requires the activity of endogenous ErbBs. We show here that lens fiber-promoting levels of FGF induce desensitization of ErbB1 (EGFR) that involves its phosphorylation on threonine 669 mediated by both ERK and p38 activity. Transinhibition of ErbB1 by FGF is overcome by a time-dependent increase in ErbB1 levels induced by TGFß, the activation of which is increased after cataract surgery. Our studies provide a rationale for why TGFß upregulates ErbB1 in lens cells and further support the receptor as a therapeutic target for PCO.


Assuntos
Catarata , Células Epiteliais , Receptores ErbB , Fibrose , Cristalino , Fator de Crescimento Transformador beta , Humanos , Catarata/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Cristalino/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...